Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available June 15, 2026
- 
            Egocentric temporal action segmentation in videos is a crucial task in computer vision with applications in various fields such as mixed reality, human behavior analysis, and robotics. Although recent research has utilized advanced visual-language frameworks, transformers remain the backbone of action segmentation models. Therefore, it is necessary to improve transformers to enhance the robustness of action segmentation models. In this work, we propose two novel ideas to enhance the state-of-the-art transformer for action segmentation. First, we introduce a dual dilated attention mechanism to adaptively capture hierarchical representations in both local-to-global and global-to-local contexts. Second, we incorporate cross-connections between the encoder and decoder blocks to prevent the loss of local context by the decoder. We also utilize state-of-the-art visual-language representation learning techniques to extract richer and more compact features for our transformer. Our proposed approach outperforms other state-of-the-art methods on the Georgia Tech Egocentric Activities (GTEA) and HOI4D Office Tools datasets, and we validate our introduced components with ablation studies. The source code and supplementary materials are publicly available on https://www.sail-nu.com/dxformer.more » « less
- 
            Despite the advances in Human Activity Recognition, the ability to exploit the dynamics of human body motion in videos has yet to be achieved. In numerous recent works, re- searchers have used appearance and motion as independent inputs to infer the action that is taking place in a specific video. In this paper, we highlight that while using a novel representation of human body motion, we can benefit from appearance and motion simultaneously. As a result, bet- ter performance of action recognition can be achieved. We start with a pose estimator to extract the location and heat- map of body joints in each frame. We use a dynamic encoder to generate a fixed size representation from these body joint heat-maps. Our experimental results show that training a convolutional neural network with the dynamic motion representation outperforms state-of-the-art action recognition models. By modeling distinguishable activities as distinct dynamical systems and with the help of two stream net- works, we obtain the best performance on HMDB, JHMDB, UCF-101, and AVA datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available